
papers/notebooks/program.enhancements
created 09-11-2009
revised 09-05-2010

Future Enhancements for Automated Reasoning Programs

Larry Wos

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
wos@mcs.anl.gov

1. Visiting New Ideas and Research Topics
Would you enjoy evaluating some (probably) new ideas for enhancing the power and scope of an

automated reasoning program, a program that features first-order logic? Do programming challenges
appeal to you? Is the avoidance of a huge amount of iteration of interest? Would you like some notions
that you can apply to hone your reasoning skills, unaided by a computer? Are you looking for a research
topic? Do you find fascination in witnessing a program modify, without your intervention, its approach as
it attempts to complete a given assignment? If your answer to any of the posed questions is in the affirma-
tive, this notebook might provide you stimulation, entertainment, and, just perhaps, material that will lead
to a paper to publish or a chapter to write.

In that regard, I pause for a bit to present a short note from Ross Overbeek.

A Short Note by Ross Overbeek
In this notebook Larry discusses a number of protocols for restricting the search made by an auto-

mated reasoning program such as OTTER. In the old days, we would have viewed such suggestions some-
what skeptically on the grounds that it took a great deal of effort to actually test such conjectures, and many
of the conjectures made by senior people did turn out to be less than fruitful. I believe that the comments
Larry is making here should be treated seriously for the following reasons:
1. Larry has grounded his comments in a huge number of runs that he has submitted and studied.

Attempting to solve one problem after another does induce some level of insight, and Larry has been as
successful as anyone else that I know of in making programs actually produce proofs.
2. It would take relatively little effort to test his ideas, given the advances in available programming lan-

guages. with a language such as Perl or Python, it would be relatively trivial to create an automated proto-
col (say, as a Perl script) in which

a. input is prepared for OTTER from an abstract representation,
b. an OTTER run is formulated in a way that causes it to run for some short period before it is inter-

rupted,
c. the output of the OTTER is parsed, and new parameters are constructed to reflect the outcome of pre-

ceding short runs, and
d. steps b and c are iterated until a proof is acquired.

In Perl or Python, it is easy to generate OTTER input, and it is easy to parse the output.

This work was supported in part by the U.S. Department of Energy, under Contract DE-AC02-06CH11357.

2

I sincerely believe, were I a doctoral student entering the field, that I would create a test set of theo-
rems that I considered quite difficult (but provable), I would formulate a set of strategies reflecting my
understanding of what Larry was proposing in this notebook, and I would test them and tabulate the relative
behavior of the differing protocols. My guess is that this would be a direct and simple path to a doctorate,
but that is only a conjecture. I do speak from some experience, though. I did formulate a system to prove a
challenge Larry posed almost 40 years ago; I was successful, and it did get me a doctorate.

Ross Overbeek

Resuming the Narrative
As you likely expect, the automated reasoning program I rely on is W. McCune’s OTTER. However,

what is discussed here is relevant to reasoning programs in general and, for that matter, to reasoning on
your own.

Noting that some background will shortly be supplied, I ask you to consider one of the objectives of
the material covered here. Specifically, in my iterative approach aimed at completing an assignment, some
runs complete early during the night, leaving the program waiting for my next experiment. Would it not be
more than pleasant—fine rhetoric?—if the program could simply proceed on its own, avoiding the waste of
time that occurs while it waits for me, or for some other researcher? An exciting prospect to contemplate,
as my esteemed colleague R. Overbeek would agree! The program I envision will, if so instructed, examine
its results (partial in most cases), make choices about how to modify its approach to increase the likelihood
of success, and then resume its attack. Although notions of this type have been addressed, what is needed
are metrics that the program could use to decide when to change its approach and, then, where to go next.
In no way am I suggesting that researchers will be, eventually, unneeded. That will not occur for centuries,
if ever! However, so often the hours of the night are wasted with the program sitting idle. Instead, with
certain enhancements, perhaps the program could, so to speak, learn from its successes and failures and
proceed on its own, based on various analyses and criteria. This mythical, at this time, program could (in
effect) conduct a series of experiments, each based on what had been occurring, just as I now do with a
series of separate experiments.

With such a program, or with programs that do not offer self-analytical capability, even more strategy
is needed than is available today, some to restrict reasoning, some to direct it, as well as other types of strat-
egy. A few remarks are in order to provide background, especially for those less familiar with various types
of strategy that (in my view) are crucial for attacking deep problems and hard questions. Whether your
interests mesh with mine, the study of numerous aspects of mathematics and logic, or whether your inter-
ests are elsewhere, for example, verification or design, I strongly suspect that the role of strategy may not
have been emphasized as it is in this notebook. Whatever your area of study, when an automated reasoning
program plays a key role, its power (obviously) matters much. In my research, I typically rely on an itera-
tive approach. Almost always, I give advice to the program I use (as noted, McCune’s OTTER is the auto-
mated reasoning program I rely on). The advice may focus on R. Veroff’s hints, on resonators, on the hot
list, on the choice of which elements to place in the initial set of support, and more. Specifically, I expect
that, to reach my goal, I will be required to make a series of experiments, later ones building on results
obtained in earlier ones. And just as chess players, poker players, and (some) football players rely on strat-
egy—for substantial success—I will use various types of strategy.

In automated reasoning, the majority of available strategies are restriction or direction. Why does a
powerful program need both types of strategy, whether the axiom system of concern is small (as is often
true in areas of mathematics or logic)or large (as is the case typically in database problems).?

The need for strategy rests with the (perhaps surprising to those who have not experienced such)
huge number of paths that can be pursued and the gigantic number of conclusions that can be drawn in
search of the desired proof or other goal. Most exciting to me are strategies that restrict the reasoning of a
program. Clearly, if unrestricted, when the set of axioms is very large, the set of conclusions to be exam-
ined can grow wildly. What may not be so obvious is the exponential growth that can occur even when the
(initial) set of axioms is small. Indeed, I have recently in studies of intuitionistic logic, with an axiom

3

system consisting of but ten formulas, obtained the sought-after proof only after the generation of almost
700,000,000 conclusions.

Of the strategies that I use to restrict a program’s reasoning, the set of support strategy has proved
(over decades) to be the most powerful. In that strategy, typically, you begin by partitioning the clauses that
define the problem into three classes, the basic axioms, the additional so-called special hypothesis, and the
denial of the conclusion. For example, if the goal is to prove commutativity in rings in which the cube of x
(for every x) is x (xxx = x), the special hypothesis simply consists of one equation, namely, xxx = x. The
denial of the conclusion similarly consists of one item, say, ab != ba. The basic axiom set consists of what-
ev er axioms you prefer using that capture ring theory.

Since the idea behind the introduction of the set of support strategy was to prevent a program from
exploring the entire theory from which the question or problem was taken, you typically place the basic
axioms on one list (the usable list for McCune’s automated reasoning program OTTER) and instruct the
program to never apply the chosen inference rule(s) to a set of hypotheses on that list, in other words,
among the basic axioms. Given that proviso, you can either place the elements of the other two classes
together on the list of items that can be used to initiate an application of an inference rule (the set of support
list for OTTER), or you can have that list consist solely of the special-hypothesis items. Instead, you could
rely on so-called reasoning backward by placing the denial clauses in the initial set of support and placing
the special hypotheses in list usable. Tw o additional cases in particular merit mention.

In one of the two extremes, which occurs in various areas of logic, you typically place all of the
axioms on the set of support list and place the clause for the inference rule (often condensed detachment)
on list(usable). At the other end of the spectrum, you have problems that occur in database inquiry. In such
problems, the choice of which items to place on list(sos), the set of support list, may not be so clear. For an
example quite unlike that focusing on ring theory, and one that is somewhat reminiscent of database
inquiry, the following puzzle (from everyday language) serves nicely for illustrating an appropriate use of
the set of support strategy.

There are four people: Roberta, Thelma, Steve, and Pete.
Among them, they hold eight different jobs.
Each holds exactly two jobs.
The jobs are chef, guard, nurse, clerk, police officer (gender not implied),
teacher, actor, and boxer.
The job of nurse is held by a male.
The husband of the chef is the clerk.
Roberta is not a boxer.
Pete has no education past the ninth grade.
Roberta, the chef, and the police officer went golfing together.

Question: Who holds which jobs?
For this puzzle, which you might enjoy solving on your own, a typical use of the set of support strategy
would place on list(usable) general information such as facts that include “husbands are male” and “every-
body is male or female, but not both”. Such an action prevents your program from reasoning about general
properties of people, rather than focusing on the puzzle to be solved. (The given puzzle is sometimes
known as the “jobs puzzle”; it is sometimes offered to gifted children. Nevertheless, you might find solving
it requires a bit of thought.)

As for an example of the use of a direction strategy, in the context of the given jobs puzzle, (with
OTTER) you can have the program focus heavily on any deduced conclusion when and if it involves one of
the four people.

With strategies that include the two exemplified, I have (as discussed in various notebooks on my
website, automated reasoning.net) been rewarded with the discovery of many, many new proofs of interest
to other researchers. But, greedy as I am, I often experience impatience while waiting for a given experi-
ment to terminate. Sometimes, I find that, in the middle of the night, a most useful conclusion was drawn,
followed by a number of unprofitable hours of computation. I would like a program to be able to recognize

4

the value of the conclusion and take appropriate action immediately and, most important, on its own.
Equally, if an experiment is evidencing little or no progress, I would like a program to realize that a change
must be made, and immediately make one or more changes. In this notebook, I discuss various enhance-
ments in the spirit just stated.

2. Tuning the Initial Set of Support List
The nature or content of the initial set of support can profoundly affect the likelihood of success. If

too few items are present, then a vital path may fail to be explored. If too many items are present in the ini-
tial set of support, so many paths of reasoning may be explored that far too much CPU time is consumed,
so much so that the goal is never reached. Each of these observations merits comment.

In the context of being too small, consider the case in which you are asked to prove commutativity
for rings in which xxx = x. If the corresponding clause (for xxx = x) is placed in list(usable) for OTTER,
for example, then key conclusions may fail to be drawn because they require the clause to initiate the
needed application of the appropriate inference rule. Yes, its presence will enable the program to complete
deductions; but if, just perhaps, a proof required the use of xxx = x to be used to initiate some line of rea-
soning, its absence from the initial set of support could prevent the program from ever finding a proof of
commutativity.

For an everyday language example, an example that might indeed lead you to produce a far more
complex database example, the jobs puzzle will serve nicely. If the clause that corresponds to the bit of
information asserting that “Roberta is not a boxer” is present, but not in the initial set of support, then a
possibly crucial line of inquiry may not be explored. Indeed, the needed bit of reasoning that uses this fact
might be required to begin with this fact. In other words, the puzzle may remain unsolved by the program
because certain key items are not deduced.

In the opposite case, the initial set of support may simply be too large. For example, an inexperi-
enced individual might place all of the information (that captures the problem to be solved) in the initial set
of support. Indeed, before the set of support strategy was introduced in the early 1960s, a paper was written
that advised the use of the following approach to proving theorems. The approach, one of level saturation
or breadth first, had the program simply deduce all of the immediate children of all pairs of input state-
ments; such are called level-1 deductions. Then all level-2 deductions (grandchildren) were to be made,
from a set of level-1 statements with level-1 statements and from level-1 statements considered with input
statements (those of level 0). Unfortunately, many proofs require information of level 10 or far greater.
Now, if you had placed, say, thirty items at level 0 in the initial set of support, the program likely would
drown in conclusions of level far smaller than level 10. In the context of rings in which xxx = x, if you
placed all of the information in the initial set of support, which would include all of the axioms for a ring,
the program might spend far too much time exploring ring theory as a whole, rather than focusing on the
theorem to be proved. If, in the context of the jobs puzzle, you placed all of the thought-to-be relevant
information in the initial set of support, the program might study far too long deductions about marriage
and the like.

With the preceding observations in hand, you see why the elements (content) of the initial set of sup-
port merit some consideration. Indeed, just as misleading clues offer a big obstacle in a treasure hunt, so
does the presence of too few or too many clues. I now offer some notions about the use of the set of sup-
port strategy, about how the (initial) set of support might be modified, by your reasoning program, as the
search for the treasure proceeds.

In the late 1960s, David Luckham (a colleague of mine in the field then called automated theorem
proving) made the following intriguing observation. He correctly noted that, when the set of support strat-
egy is in use, far more partitioning occurs at level 1 than at higher levels. Specifically, many of the clauses
that would have been deduced at level 1 are not deduced because their parents are in the complement of the
initial set of support, which often contributed markedly to the likelihood of success. (Of course, obviously,
level 2 is smaller than it would have been because of the missing clauses on level 1 that were not gener-
ated.) This partitioning occurs because level 0 is partitioned into the initial set of support and its comple-
ment, in OTTER, list(usable).

5

2.1. Partitioning Enhancement for Tuning the Initial Set of Support List
The following enhancement, which extends the spirit of the set of support strategy to levels 2 and

higher in the sense just illustrated, might merit study. With the focus on level-2 clauses, when a clause of
level-2 is deduced, it is adjoined to the set of support list if and only if at least one of its parents is a mem-
ber of the initial set of support. If none of its parents is a member of the initial set of support, and if the
clause is to be retained, it is immediately placed on list(usable) (for OTTER), and the newly retained clause
is not allowed to initiate paths of reasoning. If the proposed enhancement is available and applied to level 3
and beyond, then, clearly, the levels will not grow so dramatically. One of the side effects of using this
enhancement is the increase, in a practical sense, in the use of a breadth-first (level-saturation) approach;
indeed, a breadth-first search is far more usable if the size of the levels increases slowly. Of course, the
proposed enhancement (if used) increases the likelihood that all paths to reaching the goal are blocked.

2.2. Maximal-Level Partitioning Enhancement for Tuning the Initial Set of Support List
A somewhat related variant of the just-described enhancement gives the user more responsibility and

more latitude, and it has a smaller chance of blocking all paths to a solution to the problem under consider-
ation. In the variant, the criterion for being placed on the list(sos) just given is replaced by a user-chosen
maximal level. Specifically, at least one of the parents must have lev el less than or equal to the chosen
maximum in order for the newly retained conclusion to be adjoined to the (list)sos). This variant, as well as
that previously described, is a restriction strategy. It restricts the program’s reasoning in a manner that is
consistent with the more familiar set of support strategy, which restricts a program’s reasoning by avoiding
the deduction of many lev el-1 clauses that could be deduced if all input clauses were allowed to be consid-
ered in all combinations as parents.

2.3. Discarding Enhancement for Tuning the Initial Set of Support List
A more dangerous variant (also a restriction strategy) of either of the two enhancements has the pro-

gram simply discard any newly deduced clause when the decision is not to adjoin the new item to the set of
support list. The danger rests with the total blocking of newly deduced items that are not placed on
list(sos), which is indeed quite a restriction to the program’s reasoning.

Yes, it is hoped, you will invent other related enhancements.

2.4. Direction Strategy Enhancement for Tuning the Initial Set of Support List
For an enhancement that has the flavor of a direction strategy, the newly retained clause has its

weight (priority) adjusted in part based on the nature of its parents. Other variations can be formulated; see
the enhancements discussed in this section.

3. Inheritance
With the use of the set of support strategy, you could say that inheritance is present. Indeed, a clause

deduced and retained, when this strategy is used, also immediately has support in the sense that it can be
chosen to initiate inference-rule applications.

For a discussion of the next enhancement, which I find unlike those discussed in the preceding sec-
tion, some background will prove valuable.

The likelihood of solving a mystery, answering a question, proving a theorem, or carrying out other
activities that rely on careful and logical reasoning often is increased by the deduction of some key fact or
key facts. Such deductions are occasionally crucial. In mathematics and in logic, for example, lemmas
play a key role, results deduced while seeking to reach the target. If you are skilled, or perhaps fortunate,
when you deduce a key lemma, you recognize its importance and quickly rely on its use. So, you might
wonder, how can an automated reasoning program (in effect) emulate this effective move?

The method I use is to include in the input the negations of lemmas conjectured to be useful; for
OTTER, they are placed in list(passive). I also include in the input resonators that correspond to (the posi-
tive form of) each lemma, formulas or equations that closely resemble the lemmas conjectured to be of use,

6

where the specific variables are treated as indistinguishable. To each such resonator, I assign a small
weight, or priority, so that when and if one of the lemmas is deduced, the program will quickly key on the
new thought-to-be powerful result. To be explicit, my actions are not designed to precisely emulate the
approach a person might take; rather, the goal is to provide another direction strategy to enable the reason-
ing program to follow one or more promising lines of attack.

Even if an included lemma is not proved, its presence as a resonator can have a marked effect on the
program’s attack because all variables in a resonator are treated as indistinguishable, ignored other than
being recognized as a variable. Therefore, if the program deduces and retains a new conclusion (clause) A
that is similar in shape to an included resonator B, although A is not identical to B, the newly retained con-
clusion will be given the same priority as the lemma that prompted the inclusion of the resonator B.
Clearly, an illustration is in order.

Consider the following resonator B, and assume that B corresponds to a lemma chosen in phase one
of lemma adjunction but not proved; lemma adjunction is fully treated in Chapter 2 of the book Automated
Reasoning and the Discovery of Missing and Elegant Proofs. (The clause language relies on predicates
such as P, which here can be interpreted as “provable”.)

weight(P(i(i(i(i(x,y),i(z,y)),y),i(i(z,x),z))),2).
If the program deduces and retains the following clause A, then A will be given high priority for directing
the program’s reasoning because (treating all variables as indistinguishable) A is similar to B.

P(i(i(i(i(x,y),i(z,y)),u),i(i(z,x),u))).
The fact that A does not correspond to a chosen lemma but, nevertheless, is given high priority illustrates
how the inclusion of an unprovable or unproved lemma can affect the program’s reasoning. From a practi-
cal viewpoint, a focus on A may be the key to completing a desired proof. In other words, (as illustrated)
you need not choose the precise lemmas that play a vital role.

I hav e had great success putting the negations of lemmas in list(passive) with the (positive) form
included as resonators. Experiments over many years has provided evidence of the power of this approach,
whether the goal is finding a shorter proof than in hand, finding a so-called first proof, or simply reducing
the CPU time required to complete a given assignment. But what about the child of a newly deduced
lemma? Can and should that child be given preference, special consideration? In research conducted by an
unaided mathematician or logician, say, the discovery of a lemma is often immediately followed by a line
of inquiry that is based on the new discovery. In particular, a child of such a lemma, a deduction in which
the new lemma is a parent, is given much consideration.

3.1. Lemma Inheritance Enhancement
The enhancement in focus here captures that intention. Specifically, when a lemma is proved (whose

negation is included as a target and whose positive form is included as an item to be given much preference
for inference-rule initiation), a child of that lemma would be given the same priority or nearly the same.
Further, a grandchild would also be given preference, when and if deduced, but, as expected, less prefer-
ence than the newly proved lemma. With this enhancement, a reasoning program would be encouraged to
pursue, sometimes sharply, a line of reasoning that stems from a newly proved item that the user of the pro-
gram conjectured to be significant. The given enhancement could be thought of as a lemma-inheritance
ability, and reliance on its use gives the program yet another direction strategy to employ.

3.2. Resonator Inheritance Enhancement
In a related way, you could add to a program a resonator-inheritance strategy for also directing the

program’s reasoning. With this enhancement, as you probably have guessed, the child of an included res-
onator is given the same or somewhat less priority as are formulas that match the cited resonator. A grand-
child inherits the power of the resonator, but with a decrease in its weight or priority. As far as I am aware
at the moment, little is now available in the spirit of inheritance.

7

3.3. Axiom Inheritance Enhancement
I hope by now you have gotten the bug, joined the game, and are ready to ask about other types of

inheritance strategies. For example, what about an axiomatic-inheritance strategy? The child of an axiom
would be given almost the same power as an axiom is given, and the grandchild somewhat less but more
power than it would ordinarily be given. As those familiar with my approach know, in general I prefer
axioms to be used to complete applications of inference rules, but not to initiate their use. Indeed, the set of
support strategy encourages the user to place axioms outside of the set of support for many, many studies.
With a level-saturation (breadth-first) search, children of elements in the set of support are immediately
considered before grandchildren, which are immediately considered (in focus) before great-grandchildren,
and the like. For many assignments, however, a lev el-saturation approach is not practical. What could be
made available, in the spirit of so-called axiomatic inheritance, is the assigning for inference-rule applica-
tion initiation a high priority to, say, the child of a member of the (initial) set of support. You see the gener-
alization that might be indeed interesting.

3.4. Hot List Enhancement
Possibly the genesis of the following strategy—a strategy perhaps closer to axiomatic inheritance—is

the insightful observation by Branden Fitelson that, when studying a single axiom, the heat should be
assigned a high value, perhaps as much as 10. Indeed, an examination of proofs such as Meredith’s of his
single axiom (for classical propositional calculus) used to derive Lukasiewicz 1 2 3 shows that sequences of
steps exist in which each relies on the use of the single axiom. Further, and here is why a high heat value,
the second element of the sequence relies on the first, the third upon the second, and the like. The proposed
strategy, for directing the reasoning, would adjust the weight of the newly retained clause in accordance
with the number of occurrences of certain chosen axioms in its history. For but one example, a child of a
pair in condensed detachment with one parent being the single axiom would be given more preference,
because of its parentage, than its symbol count would give it. If both parents were the single axiom, even
more preference would be given.

3.5. Other Possible Related Enhancements
A second variation would adjust the weight based on the history in the context of how many and

which clauses were used from the initial set of support. A third variation would make preference adjust-
ments based on a user-chosen set of preferences for the initial set of support members. For example, the
Robbins equation is far more significant than either of associativity or commutativity. Penalties and
rewards could be used based on the nature of the immediate parents of a newly retained clause, in the con-
text of the preceding.

Although not precisely in the spirit of inheritance, perhaps the heat of a clause would be used to mod-
ify its weight. Ordinarily, the higher the heat, the more preference to be given, but not necessarily. Per-
haps, through experimentation in a given study, heat=4 is determined to be more significant than heat=6.

4. Self-Analysis
Of a different nature, in the spirit of learning and self-analysis, the following strategy merits study.

You place in the passive list the negations of lemmas, whether or not proved, thought to be of interest or
crucial to reaching the goal. Whenever one of those lemmas is proved, have the program pause, adjoin the
positive form of it as a resonator, and adjust the weights of the matching clauses currently on the set of sup-
port commensurate with the value assigned the new resonator, usually a small one. For a variation, all
proof steps of such a lemma would also be adjoined as resonators and adjustments made to the matching
clauses on the set of support.

5. Summary and Notes
For total clarity, the goal is not to produce a program that is self-sufficient. Rather, the objective is to

have a program that can, in effect, frequently discuss with itself how things are going. The program I envi-
sion would, therefore, be a far more valuable, automated reasoning assistant than it is now. Of course, as

8

shown by the splendid achievements being made here in the year 2010, programs such as OTTER are far
more powerful than they were but thirty years ago. That dialogue would determine whether progress is
being made, which parameters to change, what other actions to take. The program could and would recog-
nize failures and successes, and benefit from identifying such. To sav e the time that now is not put to use,,
for example, during the night as the computer sits idle while it waits for more instructions, is not nearly as
crucial as the sharp decrease in time (with the envisioned program) required to reach one goal after another.
Indeed, when you can test ideas in hours rather than in weeks, your eagerness and pleasure heightens, and
the likelihood of producing a new powerful methodology is also increased greatly. The program I envision
would behave as if it is learning, locally, learning from the results that it analyzes as it seeks to find a first
proof, discover a shorter proof, or reach some other objective.

In lieu of extensive programming, perhaps one or more of the enhancements could be studied or sim-
ulated, to gain some insight into its value, with the use of demodulation, weighting, or some other mecha-
nism. In the spirit of the preceding observation, to determine which elements are best placed in the initial
set of support, you could run an experiment in which all input clauses are placed on the list(sos). An exam-
ination of the actions of the program might suggest strongly what you would be wise to do. Somewhat
related, in my research focusing on classical propositional calculus, I have often in part focused on 68 these
cited by Lukasiewicz. Their inclusion, as resonators and or (in negated form) as intermediate targets, has
sometimes led me to good choices about values to assign to various parameters. For example, even though
proofs of one or more of the 68 had little to do with reaching the main target, such proofs occasionally sug-
gested progress was being made.

As is clear from this notebook, and others found on my website, reliance on an automated reasoning
program is most appealing, and the results are most satisfying. I like the fact that, rather than two weeks of
thought and unaided experimentation, followed by the conclusion that the approach is not worth pursuing,
A good assistant (in the form of a program such as OTTER) permits a huge number of experiments in a
very short time.

Until we meet in the next notebook, I wish you excitement and pleasure as you consider what is
offered here.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory
("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, ir-
revocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

